首页> 外文OA文献 >Low-Reynolds number mixing ventilation flows: impact of physical and numerical diffusion on flow and dispersion
【2h】

Low-Reynolds number mixing ventilation flows: impact of physical and numerical diffusion on flow and dispersion

机译:低雷诺数混合通风流量:物理和数值扩散对流量和扩散的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quality assurance in computational fluid dynamics (CFD) is essential for an accurate and reliable assessment of complex indoor airflow. Two important aspects are the limitation of numerical diffusion and the appropriate choice of inlet conditions to ensure the correct amount of physical diffusion. This paper presents an assessment of the impact of both numerical and physical diffusion on the predicted flow patterns and contaminant distribution in steady Reynolds-averaged Navier–Stokes (RANS) CFD simulations of mixing ventilation at a low slot Reynolds number (Re≈2,500). The simulations are performed on five different grids and with three different spatial discretization schemes; i.e. first-order upwind (FOU), second-order upwind (SOU) and QUICK. The impact of physical diffusion is assessed by varying the inlet turbulence intensity (TI) that is often less known in practice. The analysis shows that: (1) excessive numerical and physical diffusion leads to erroneous results in terms of delayed detachment of the wall jet and locally decreased velocity gradients; (2) excessive numerical diffusion by FOU schemes leads to deviations (up to 100%) in mean velocity and concentration, even on very high-resolution grids; (3) difference between SOU and FOU on the coarsest grid is larger than difference between SOU on coarsest grid and SOU on 22 times finer grid; (4) imposing TI values from 1% to 100% at the inlet results in very different flow patterns (enhanced or delayed detachment of wall jet) and different contaminant concentrations (deviations up to 40%); (5) impact of physical diffusion on contaminant transport can markedly differ from that of numerical diffusion.
机译:计算流体动力学(CFD)的质量保证对于准确而可靠地评估复杂的室内气流至关重要。两个重要方面是数值扩散的限制和入口条件的适当选择,以确保正确的物理扩散量。本文介绍了在低缝隙雷诺数(Re≈2,500)下混合通风的稳定雷诺平均Navier-Stokes(RANS)CFD模拟中,数值扩散和物理扩散对预测流型和污染物分布的影响的评估。仿真是在五个不同的网格上进行的,并使用三种不同的空间离散化方案进行;即一阶逆风(FOU),二阶逆风(SOU)和QUICK。通过改变通常在实践中鲜为人知的入口湍流强度(TI)来评估物理扩散的影响。分析表明:(1)过多的数值和物理扩散导致壁射流分离延迟和速度梯度局部降低方面的错误结果; (2)即使在非常高分辨率的网格上,通过FOU方案进行的过度数值扩散也会导致平均速度和浓度偏差(高达100%); (3)最粗糙网格上的SOU和FOU之间的差异大于最粗糙网格上的SOU和22倍精细网格上的SOU之间的差异; (4)在进口处施加TI值从1%到100%会导致非常不同的流型(增强或延迟壁射流的分离)和不同的污染物浓度(偏差高达40%); (5)物理扩散对污染物迁移的影响可能与数值扩散的影响明显不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号